Вычислить корни квадратного уравнения -3x²-30x-75=0

x2+x+=0
Дано
Квадратное уравнение -3x²-30x-75=0
Задача
Найти корни уравнения
Решение
Вычислим дискриминант
\(\large D=b^2-4ac=\) \(\large(-30)^2-4\times (-3)\times (-75)=0\)
Т.к. дискриминант равен нулю, уравнение имеет один корень
\(\large x=\frac{-b}{2a}=\) \(\large\frac{-(-30)}{2 \times (-3)}=-5\)
Уравнение -3x²-30x-75=0 имеет один корень x=-5.
Ссылка на результат
https://calc-best.ru/matematicheskie/reshenie-kvadratnykh-uravnenij?n1=-3&n2=-30&n3=-75
Правила ввода

Если вы хотите ввести неполную квадратичную параболу y=ax², y=ax²+bx или y=ax²+c вам нужно вместо соответствующих коэффициентов вписать 0. Если поля останутся пустыми программа впишет 1.

Вводить можно целые(1, 2, 3, -7), десятичные(0.25, -1.15), дробные(-1/8, 32/9). Если необходимо ввести смешанное число, то нужно перед вводом перевести его в неправильную обыкновенную дробь. Т.е. 1 целая 1/2 вводить нужно будет как 3/2.

Похожие калькуляторы