Вычислить корни квадратного уравнения -3x²+24x+99=0
x2+x+=0
Дано
Квадратное уравнение -3x²+24x+99=0
Задача
Найти корни уравнения
Решение
Вычислим дискриминант
\(\large D=b^2-4ac=\) \(\large24^2-4\times (-3)\times 99=1764\)
\(\large x_1=\) \(\LARGE\frac{-b+\sqrt{D}}{2a}\) \(\large=\) \(\LARGE\frac{-24+\sqrt{1764}}{2 \times (-3)}\) \(\large=\) \(\large-3\)
\(\large x_2=\) \(\LARGE\frac{-b-\sqrt{D}}{2a}\) \(\large=\) \(\LARGE\frac{-24-\sqrt{1764}}{2 \times (-3)}\) \(\large=\) \(\large11\)
Уравнение -3x²+24x+99=0 имеет два корня x₁=-3, x₂=11.
Ссылка на результат
https://calc-best.ru/matematicheskie/reshenie-kvadratnykh-uravnenij?n1=-3&n2=24&n3=99
Правила ввода
Если вы хотите ввести неполную квадратичную параболу y=ax², y=ax²+bx или y=ax²+c вам нужно вместо соответствующих коэффициентов вписать 0. Если поля останутся пустыми программа впишет 1.
Вводить можно целые(1, 2, 3, -7), десятичные(0.25, -1.15), дробные(-1/8, 32/9). Если необходимо ввести смешанное число, то нужно перед вводом перевести его в неправильную обыкновенную дробь. Т.е. 1 целая 1/2 вводить нужно будет как 3/2.
Похожие калькуляторы