Вычислить корни квадратного уравнения 11x²+66x+99=0
x2+x+=0
Дано
Квадратное уравнение 11x²+66x+99=0
Задача
Найти корни уравнения
Решение
Вычислим дискриминант
\(\large D=b^2-4ac=\) \(\large66^2-4\times 11\times 99=0\)
Т.к. дискриминант равен нулю, уравнение имеет один корень
\(\large x=\frac{-b}{2a}=\) \(\large\frac{-66}{2 \times 11}=-3\)
Уравнение 11x²+66x+99=0 имеет один корень x=-3.
Ссылка на результат
https://calc-best.ru/matematicheskie/reshenie-kvadratnykh-uravnenij?n1=11&n2=66&n3=99
Правила ввода
Если вы хотите ввести неполную квадратичную параболу y=ax², y=ax²+bx или y=ax²+c вам нужно вместо соответствующих коэффициентов вписать 0. Если поля останутся пустыми программа впишет 1.
Вводить можно целые(1, 2, 3, -7), десятичные(0.25, -1.15), дробные(-1/8, 32/9). Если необходимо ввести смешанное число, то нужно перед вводом перевести его в неправильную обыкновенную дробь. Т.е. 1 целая 1/2 вводить нужно будет как 3/2.
Похожие калькуляторы