Вычислить корни квадратного уравнения 16x²+72x+17=0

x2+x+=0
Дано
Квадратное уравнение 16x²+72x+17=0
Задача
Найти корни уравнения
Решение
Вычислим дискриминант
\(\large D=b^2-4ac=\) \(\large72^2-4\times 16\times 17=4096\)
\(\large x_1=\) \(\LARGE\frac{-b+\sqrt{D}}{2a}\) \(\large=\) \(\LARGE\frac{-72+\sqrt{4096}}{2 \times 16}\) \(\large=\) \(\large-0.25\)
\(\large x_2=\) \(\LARGE\frac{-b-\sqrt{D}}{2a}\) \(\large=\) \(\LARGE\frac{-72-\sqrt{4096}}{2 \times 16}\) \(\large=\) \(\large-4.25\)
Уравнение 16x²+72x+17=0 имеет два корня x₁=-0.25, x₂=-4.25.
Ссылка на результат
https://calc-best.ru/matematicheskie/reshenie-kvadratnykh-uravnenij?n1=16&n2=72&n3=17
Правила ввода

Если вы хотите ввести неполную квадратичную параболу y=ax², y=ax²+bx или y=ax²+c вам нужно вместо соответствующих коэффициентов вписать 0. Если поля останутся пустыми программа впишет 1.

Вводить можно целые(1, 2, 3, -7), десятичные(0.25, -1.15), дробные(-1/8, 32/9). Если необходимо ввести смешанное число, то нужно перед вводом перевести его в неправильную обыкновенную дробь. Т.е. 1 целая 1/2 вводить нужно будет как 3/2.

Похожие калькуляторы