Рассчитать высоту треугольника со сторонами 106, 104 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{106 + 104 + 46}{2}} \normalsize = 128}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128(128-106)(128-104)(128-46)}}{104}\normalsize = 45.2715672}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128(128-106)(128-104)(128-46)}}{106}\normalsize = 44.4173866}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128(128-106)(128-104)(128-46)}}{46}\normalsize = 102.353108}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 106, 104 и 46 равна 45.2715672
Высота треугольника опущенная с вершины A на сторону BC со сторонами 106, 104 и 46 равна 44.4173866
Высота треугольника опущенная с вершины C на сторону AB со сторонами 106, 104 и 46 равна 102.353108
Ссылка на результат
?n1=106&n2=104&n3=46
Найти высоту треугольника со сторонами 133, 82 и 58
Найти высоту треугольника со сторонами 126, 95 и 65
Найти высоту треугольника со сторонами 145, 123 и 103
Найти высоту треугольника со сторонами 116, 114 и 106
Найти высоту треугольника со сторонами 100, 73 и 55
Найти высоту треугольника со сторонами 94, 70 и 70
Найти высоту треугольника со сторонами 126, 95 и 65
Найти высоту треугольника со сторонами 145, 123 и 103
Найти высоту треугольника со сторонами 116, 114 и 106
Найти высоту треугольника со сторонами 100, 73 и 55
Найти высоту треугольника со сторонами 94, 70 и 70