Рассчитать высоту треугольника со сторонами 108, 59 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 59 + 54}{2}} \normalsize = 110.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{110.5(110.5-108)(110.5-59)(110.5-54)}}{59}\normalsize = 30.391838}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{110.5(110.5-108)(110.5-59)(110.5-54)}}{108}\normalsize = 16.6029485}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{110.5(110.5-108)(110.5-59)(110.5-54)}}{54}\normalsize = 33.2058971}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 59 и 54 равна 30.391838
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 59 и 54 равна 16.6029485
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 59 и 54 равна 33.2058971
Ссылка на результат
?n1=108&n2=59&n3=54
Найти высоту треугольника со сторонами 128, 126 и 14
Найти высоту треугольника со сторонами 125, 124 и 107
Найти высоту треугольника со сторонами 141, 121 и 114
Найти высоту треугольника со сторонами 53, 43 и 28
Найти высоту треугольника со сторонами 117, 112 и 55
Найти высоту треугольника со сторонами 94, 89 и 62
Найти высоту треугольника со сторонами 125, 124 и 107
Найти высоту треугольника со сторонами 141, 121 и 114
Найти высоту треугольника со сторонами 53, 43 и 28
Найти высоту треугольника со сторонами 117, 112 и 55
Найти высоту треугольника со сторонами 94, 89 и 62