Рассчитать высоту треугольника со сторонами 139, 128 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 128 + 79}{2}} \normalsize = 173}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{173(173-139)(173-128)(173-79)}}{128}\normalsize = 77.9386214}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{173(173-139)(173-128)(173-79)}}{139}\normalsize = 71.7708169}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{173(173-139)(173-128)(173-79)}}{79}\normalsize = 126.280298}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 128 и 79 равна 77.9386214
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 128 и 79 равна 71.7708169
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 128 и 79 равна 126.280298
Ссылка на результат
?n1=139&n2=128&n3=79
Найти высоту треугольника со сторонами 117, 103 и 92
Найти высоту треугольника со сторонами 131, 124 и 75
Найти высоту треугольника со сторонами 72, 65 и 55
Найти высоту треугольника со сторонами 119, 107 и 91
Найти высоту треугольника со сторонами 144, 137 и 86
Найти высоту треугольника со сторонами 120, 117 и 9
Найти высоту треугольника со сторонами 131, 124 и 75
Найти высоту треугольника со сторонами 72, 65 и 55
Найти высоту треугольника со сторонами 119, 107 и 91
Найти высоту треугольника со сторонами 144, 137 и 86
Найти высоту треугольника со сторонами 120, 117 и 9