Рассчитать высоту треугольника со сторонами 144, 135 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{144 + 135 + 55}{2}} \normalsize = 167}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167(167-144)(167-135)(167-55)}}{135}\normalsize = 54.9670439}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167(167-144)(167-135)(167-55)}}{144}\normalsize = 51.5316036}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167(167-144)(167-135)(167-55)}}{55}\normalsize = 134.919108}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 144, 135 и 55 равна 54.9670439
Высота треугольника опущенная с вершины A на сторону BC со сторонами 144, 135 и 55 равна 51.5316036
Высота треугольника опущенная с вершины C на сторону AB со сторонами 144, 135 и 55 равна 134.919108
Ссылка на результат
?n1=144&n2=135&n3=55
Найти высоту треугольника со сторонами 142, 140 и 86
Найти высоту треугольника со сторонами 136, 113 и 89
Найти высоту треугольника со сторонами 150, 112 и 63
Найти высоту треугольника со сторонами 129, 98 и 81
Найти высоту треугольника со сторонами 126, 89 и 84
Найти высоту треугольника со сторонами 97, 66 и 47
Найти высоту треугольника со сторонами 136, 113 и 89
Найти высоту треугольника со сторонами 150, 112 и 63
Найти высоту треугольника со сторонами 129, 98 и 81
Найти высоту треугольника со сторонами 126, 89 и 84
Найти высоту треугольника со сторонами 97, 66 и 47