Рассчитать высоту треугольника со сторонами 147, 106 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{147 + 106 + 57}{2}} \normalsize = 155}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155(155-147)(155-106)(155-57)}}{106}\normalsize = 46.0411381}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155(155-147)(155-106)(155-57)}}{147}\normalsize = 33.1997323}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155(155-147)(155-106)(155-57)}}{57}\normalsize = 85.6203621}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 147, 106 и 57 равна 46.0411381
Высота треугольника опущенная с вершины A на сторону BC со сторонами 147, 106 и 57 равна 33.1997323
Высота треугольника опущенная с вершины C на сторону AB со сторонами 147, 106 и 57 равна 85.6203621
Ссылка на результат
?n1=147&n2=106&n3=57
Найти высоту треугольника со сторонами 143, 137 и 34
Найти высоту треугольника со сторонами 136, 118 и 51
Найти высоту треугольника со сторонами 116, 89 и 63
Найти высоту треугольника со сторонами 143, 103 и 57
Найти высоту треугольника со сторонами 87, 85 и 65
Найти высоту треугольника со сторонами 133, 98 и 44
Найти высоту треугольника со сторонами 136, 118 и 51
Найти высоту треугольника со сторонами 116, 89 и 63
Найти высоту треугольника со сторонами 143, 103 и 57
Найти высоту треугольника со сторонами 87, 85 и 65
Найти высоту треугольника со сторонами 133, 98 и 44