Рассчитать высоту треугольника со сторонами 75, 74 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{75 + 74 + 35}{2}} \normalsize = 92}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92(92-75)(92-74)(92-35)}}{74}\normalsize = 34.2365765}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92(92-75)(92-74)(92-35)}}{75}\normalsize = 33.7800888}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92(92-75)(92-74)(92-35)}}{35}\normalsize = 72.3859046}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 75, 74 и 35 равна 34.2365765
Высота треугольника опущенная с вершины A на сторону BC со сторонами 75, 74 и 35 равна 33.7800888
Высота треугольника опущенная с вершины C на сторону AB со сторонами 75, 74 и 35 равна 72.3859046
Ссылка на результат
?n1=75&n2=74&n3=35
Найти высоту треугольника со сторонами 94, 79 и 42
Найти высоту треугольника со сторонами 147, 143 и 18
Найти высоту треугольника со сторонами 78, 69 и 19
Найти высоту треугольника со сторонами 108, 106 и 70
Найти высоту треугольника со сторонами 142, 128 и 122
Найти высоту треугольника со сторонами 100, 91 и 31
Найти высоту треугольника со сторонами 147, 143 и 18
Найти высоту треугольника со сторонами 78, 69 и 19
Найти высоту треугольника со сторонами 108, 106 и 70
Найти высоту треугольника со сторонами 142, 128 и 122
Найти высоту треугольника со сторонами 100, 91 и 31